

Neutronen en protonen en andere elementaire deeltjes

Atoomkernen bestaan uit protonen en neutronen

1 H waterstof	f overgangsmetalen						andere metalen niet-metalen edelgassen										2 He helium
3	4					100	A REAL	1				5	6	7	8	9	10
LI	Be					8.1	Teleda -					B	koolstof	N	O	F	Ne
11	12			anthanid	en								14	15	16	17	18
Na	Ma		a	ctiniden		1		1				A	Si	P	S	CI	Ar
natrium	magnesium	-					-					aluminium	silicium	fosfor	zwavel	chloor	argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
kalium	calcium	scandium	titanium	vanadium	chroom	mangaan	ijzer	kobalt	nikkel	koper	zink	gallium	germanium	arseen	seleen	broom	krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
rubidium	strontium	yttrium	zirkonium	niobium	molybdeen	technetium	ruthenium	rhodium	palladium	zilver	cadmium	indium	tin	antimoon	telluur	jodium	xenon
55	56	1	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
cesium	barium		hafnium	tantaal	wolfraam	renium	osmium	iridium	platina	goud	kwik	thallium	lood	bismut	polonium	astaat	radon
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
			50	50	60	64	10	60	64				60		70	74	
	-	5/	58	59	60	61	62	63	64	65	66	6/	68	69	70		
		La	Ce	Pr	Na	Pm	Sm	EU	Ga	ID	Dy	Но	Er	Im	YD	LU	-
		lantnaan	cerium	praseodymium	neodymium	prometnium	samarium	europium	gadolinium	terbium	aysprosium	noimium	erbium	thulium	ytterblum	lutetium	<
	-	89	90	91 D-	92	93 No	94	95	96	9/	98	99	100	101	102	103	
		AC	therium	Pa	U	Np	PU	Am	Cm	BK	CT	ES	FM	IVIC	NO	Lr	
		actinium	cnorium	protactinium	uranium	neptunium	plutonium	americium	cunum	berkellum	californium	einsteinium	iermium	mendelevium	nobelium	lawrencium	

Isotopen zijn 'versies' van dezelfde atoomkern

Zelfde aantal protonen (= zelfde element, zelfde atoomnummer) Ander aantal neutronen (=ander atoommassa)

vb. Deuterium = H + 1 neutron, Tritium = H + 2 neutronen vb. Koolstof

Isotopendiagram

Kernreacties

Fusiereacties: samensmelting van atoomkernen (sterke wisselwerking)

Fusiereacties: samensmelting van atoomkernen (sterke wisselwerking)

Verval van onstabiele isotopen (zwakke wisselwerking)

Binnenin atoomkernen <u>B</u>+ proton = neutron + positron + neutrino -Behoud van energie Behoud van spin ╋ e^+ р n + v_{e} +βneutron = proton + elektron + (anti)neutrino +Ook vrij neutron \overline{v}_{e} e⁻ n + + = p elektronenvangst EV proton + elektron = neutron + neutrino Niet te verwarren met *atoomsplitsing* (= atoom breekt in twee delen) ╋ ╋ e⁻ +р +n v_{e} = Enkel sterke wisselwerking

Kernreacties in het isotopendiagram

Geladen deeltjes, Coulomb en de sterke wisselwerking

Geladen deeltjes

Barrière overschrijden?

Gemiddelde energie deeltje:

$$\langle E \rangle = \frac{3}{2}kT$$

k = 8,62 10⁻⁵ eV/K

 $\langle E \rangle = 6$ MeV voor T = 46 miljard K

Coulombbarrière: potentiaal $V_{\rm C}$

Geladen deeltjes

Het tunneleffect en de Coulombbarrière

Het tunneleffect en de Coulombbarrière

Barrière overschrijden? ...Kwantummechanica

gebonden = gefusioneerd Energie << barrière

Vrij deeltje ("buiten") kan zich toch binnen bevinden

"Tunneleffect"

Coulombbarrière: potentiaal V_{c}

Het tunneleffect en de Coulombbarrière

Vrij deeltje ("buiten") kan zich toch binnen bevinden

Stijgt met stijgende snelheid (energie) Daalt voor grotere kernladingen (*Z*)

"Tunneleffect"

Kans op tunneleffect = "Penetratiefactor" P(E)

Coulombbarrière: potentiaal $V_{\rm C}$

Kernreacties mogelijk bij "lagere" temperatuur (150 mln K)

Metingen werkzame doorsnede

Kellogg Laboratory, Californië, 1950

$^{12}C + {}^{1}H \rightarrow {}^{13}N$

Bestraling roet of grafiet met protonen Meting radioactief verval ¹³N (10 min, 1,2 MeV) Meting gammastraling (1 foton per reactie)

UKP-2-1, Instituut kernfysica Kazakstan, 2008

 $^{12}C + {}^{1}H \rightarrow {}^{13}N$

Reactiesnelheid en tijdschaal

Basisprincipes

- Zwaardere sterren \rightarrow Hogere temperaturen
- Brandstof uitgeput \rightarrow Ster trekt samen

M > 0,013 M_{zon} Deuteriumverbranding T = 1 - 5 mln K t = 1 - 100% totaal Inwendige protosterren ^{2}H $^{1}\mathsf{H}$ ³He Bruine dwergen

Siliciumverbranding T = 3 mld K t enkele dagen M > 9 M_{zon}

Nucleair Statistisch Evenwicht

Kernfusie tot ijzer: bindingsenergie per nucleon

Pauze

Weinig neutronen en sterren

Het s-proces

Productie neutronen: heliumverbranding, koolstofverbranding

 $^{13}C + ^{4}He \rightarrow ^{16}O + n$ $^{18}O + ^{4}He \rightarrow ^{21}Ne + n$ $^{22}Ne + ^{4}He \rightarrow ^{25}Mg + n$ $^{26}Mg + {}^{4}He \rightarrow {}^{29}Si + n$ Vrije **neutronen** $^{12}C + ^{12}C \rightarrow ^{23}Mg + n$ Stabiele verbrandingsfase Vrij weinig neutronen $(10^{13} - 10^{18} / m^3)$ **ELEKTRISCH NEUTRAAL** Lange duur $(10^3 - 10^6 \text{ jaar})$ **GEEN COULOMBBARRIÈRE FUSIONEREN GEMAKKELIJK MET (ZWARE) ATOOMKERNEN** Neutronenvangst langzamer dan β -verval s-proces (s = "slow")

Het s-proces (s = "slow" – traag)

Meer neutronen dan normaal

Productie elementen door s-proces: waar?

In zware sterren (He, C-verbranding)

Isotopen met relatief veel neutronen

Veel neutronen en neutronensterren

40

Het r-proces

Het r-proces (r = "rapid" – snel)

Het r-proces (r = "rapid" – snel)

Het r-proces in het isotopendiagram

Vorming van (stabiele) r-proces elementen

Het r-proces in het isotopendiagram: neutronenvangst

Het r-proces in het isotopendiagram: verval tot stabiele isotopen

Vorming van r-proces elementen: supernova-explosies

Waar?

r-proces materiaal uitgeworpen via schijf

Vorming van r-proces elementen: samensmeltende neutronensterren

Vorming van r-proces elementen: samensmeltende neutronensterren

t = 15,3 ms

t = 21,2 ms

t = 26,5 ms

NASA/AEI/ZIB/M. Koppitz & L. Rezzola

Het r-proces in het isotopendiagram: verval tot stabiele isotopen

Vorming van r-proces elementen

Hoeveel?

De oerknal

 $^{1}\mathsf{H}$

n ← → p verbroken bij 8 mld K (1,5 s ná de Big Bang) $N_n/N_p = 0,16$

n

Nucleosynthese bij de oerknal: eindproducten

Vergelijking nucleosynthese oerknal met waarnemingen

Het lithiumprobleem

Het lithiumprobleem: oplossingen

4. Li toch afgebroken in oude sterren? Diffusie? Menging door rotatie?

62

De vorming van de elementen

1 H 3 Li 11 Na	4 Be 12 Mg	 Big Bang Kosmische stralen Zware sterren en SN II Ontploffende witte dwergen (SN Ia) Samensmeltende neutronensterren ART lage/intermediare massa sterren Té radioactief, synthetisch 										5 B 13 Al	6 C 14 Si	7 N 15 P	8 0 16 S	9 F 17 Cl	2 He 10 Ne 18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 УБ	71 Lu
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu									

Johnson (2019)

VERENIGING VOOR STERRENKUNDE Hieren nu: 20 euro VVS WE vo euro

Vragen?

Dank u

65

